## identify, SORT, index, solve

Just how huge are things from Thumbelina's perspective? The answer may be well beyond the powers of Google.

 $$= 2 \uparrow^{10^{100}} 2$$ $$=$$Number of particles in the known Universe $$=43^{45^{47^{49^{41^{3}}}}}$$ (eg)$$=$$ $$=3 \rightarrow 2 \rightarrow 3 \rightarrow 3$$ $$=3^{2^{2^{4^{35^{15}}}}}$$ $$=$$Graham's number $$=3^{4^{5^{6^{...^{(10^{100})}}}}}$$ $$=2 \rightarrow 3 \rightarrow 3 \rightarrow 3$$ (eg)$$=$$Largest named number in the Avataṃsaka Sūtra $$=(((10^{100}!)!)!)!$$ (eg)$$=13^{315760124882724518}$$ $$=20^{270354175698445357}$$ $$=A(4,5)$$ $$=2 \rightarrow 10^{100} \rightarrow 2$$ $$=A(10^{100},10^{100})$$ $$=2 \uparrow\uparrow 8$$ $$=BB(100)$$ $$=$$Number of permutations of these numbers $$=$$Loader's number (eg)$$=$$Largest named number in The Sand Reckoner $$=A(5,1)$$ $$=68^{75^{96^{92^{39^{3}}}}}$$ $$=2^{38^{64^{20^{57^{13}}}}}$$ $$=(10^{100})^{...^{6^{5^{4^{3}}}}}$$ (eg)$$=A(BB(99),BB(99))$$ $$=$$BIG FOOT + 1 (eg)$$=$$Moser's number $$=3 \uparrow^{10^{100}} 3$$

Lexicographic rank of this permutation:
_____________________________