Just how huge are things from Thumbelina's perspective? The answer may be well beyond the powers of Google.
\(= 2 \uparrow^{10^{100}} 2\) | |
\(=\)Number of particles in the known Universe | |
\(=43^{45^{47^{49^{41^{3}}}}}\) | |
(eg)\(=\) | |
\(=3 \rightarrow 2 \rightarrow 3 \rightarrow 3\) | |
\(=3^{2^{2^{4^{35^{15}}}}}\) | |
\(=\)Graham's number | |
\(=3^{4^{5^{6^{...^{(10^{100})}}}}}\) | |
\(=2 \rightarrow 3 \rightarrow 3 \rightarrow 3\) | |
(eg)\(=\)Largest named number in the Avataṃsaka Sūtra | |
\(=(((10^{100}!)!)!)!\) | |
(eg)\(=13^{315760124882724518}\) | |
\(=20^{270354175698445357}\) | |
\(=A(4,5)\) | |
\(=2 \rightarrow 10^{100} \rightarrow 2\) | |
\(=A(10^{100},10^{100})\) | |
\(=2 \uparrow\uparrow 8\) | |
\(=BB(100)\) | |
\(=\)Number of permutations of these numbers | |
\(=\)Loader's number | |
(eg)\(=\)Largest named number in The Sand Reckoner | |
\(=A(5,1)\) | |
\(=68^{75^{96^{92^{39^{3}}}}}\) | |
\(=2^{38^{64^{20^{57^{13}}}}}\) | |
\(=(10^{100})^{...^{6^{5^{4^{3}}}}}\) | |
(eg)\(=A(BB(99),BB(99))\) | |
\(=\)BIG FOOT + 1 | |
(eg)\(=\)Moser's number | |
\(=3 \uparrow^{10^{100}} 3\) |
Lexicographic rank of this permutation:
_____________________________