identify, SORT, index, solve

Just how huge are things from Thumbelina's perspective? The answer may be well beyond the powers of Google.


\(= 2 \uparrow^{10^{100}} 2\)
\(=\)Number of particles in the known Universe
\(=43^{45^{47^{49^{41^{3}}}}}\)
(eg)\(=\)
\(=3 \rightarrow 2 \rightarrow 3 \rightarrow 3\)
\(=3^{2^{2^{4^{35^{15}}}}}\)
\(=\)Graham's number
\(=3^{4^{5^{6^{...^{(10^{100})}}}}}\)
\(=2 \rightarrow 3 \rightarrow 3 \rightarrow 3\)
(eg)\(=\)Largest named number in the Avataṃsaka Sūtra
\(=(((10^{100}!)!)!)!\)
(eg)\(=13^{315760124882724518}\)
\(=20^{270354175698445357}\)
\(=A(4,5)\)
\(=2 \rightarrow 10^{100} \rightarrow 2\)
\(=A(10^{100},10^{100})\)
\(=2 \uparrow\uparrow 8\)
\(=BB(100)\)
\(=\)Number of permutations of these numbers
\(=\)Loader's number
(eg)\(=\)Largest named number in The Sand Reckoner
\(=A(5,1)\)
\(=68^{75^{96^{92^{39^{3}}}}}\)
\(=2^{38^{64^{20^{57^{13}}}}}\)
\(=(10^{100})^{...^{6^{5^{4^{3}}}}}\)
(eg)\(=A(BB(99),BB(99))\)
\(=\)BIG FOOT + 1
(eg)\(=\)Moser's number
\(=3 \uparrow^{10^{100}} 3\)

Lexicographic rank of this permutation:
_____________________________